Relationship of Bacterial Richness to Organic Degradation Rate and Sediment Age in Subseafloor Sediment
نویسندگان
چکیده
UNLABELLED Subseafloor sediment hosts a large, taxonomically rich, and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here, we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with increasing depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates with abundance-weighted community composition but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment, where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context. IMPORTANCE Subseafloor sediment provides a wonderful opportunity to investigate the drivers of microbial diversity in communities that may have been isolated for millions of years. Our paper shows the impact of in situ conditions on bacterial community structure in subseafloor sediment. Specifically, it shows that bacterial richness in subseafloor sediment declines exponentially with sediment age, and in parallel with organic-fueled oxidation rate. This result suggests that subseafloor diversity ultimately depends on electron donor diversity and/or total community respiration. This work studied how and why biological richness changes over time in the extraordinary ecosystem of subseafloor sediment.
منابع مشابه
Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.
Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether ...
متن کاملBacterial dominance in subseafloor sediments characterized by methane hydrates.
The degradation of organic carbon in subseafloor sediments on continental margins contributes to the largest reservoir of methane on Earth. Sediments in the Andaman Sea are composed of ~ 1% marine-derived organic carbon and biogenic methane is present. Our objective was to determine microbial abundance and diversity in sediments that transition the gas hydrate occurrence zone (GHOZ) in the Anda...
متن کاملSubseafloor sedimentary life in the South Pacific Gyre.
The low-productivity South Pacific Gyre (SPG) is Earth's largest oceanic province. Its sediment accumulates extraordinarily slowly (0.1-1 m per million years). This sediment contains a living community that is characterized by very low biomass and very low metabolic activity. At every depth in cored SPG sediment, mean cell abundances are 3 to 4 orders of magnitude lower than at the same depths ...
متن کاملEffect of remediation strategy on crude oil biodegradation kinetics and half life times in shoreline sediment samples
Bioremediation, the process by which microorganisms degrade organic compounds to non-toxic or less toxic substances, has been widely used for cleanup of coastal ecosystems after oil spills. In this study, the hydrocarbon degradation rate and half lives in three bioremediation strategies (natural attenuation, biostimulation, and bioaugmentation) were compared in weathered crude oil (WCO) contami...
متن کاملComparative Study of Subseafloor Microbial Community Structures in Deeply Buried Coral Fossils and Sediment Matrices from the Challenger Mound in the Porcupine Seabight
Subseafloor sedimentary environments harbor remarkably diverse microbial communities. However, it remains unknown if the deeply buried fossils in these sediments play ecological roles in deep microbial habitats, or whether the microbial communities inhabiting such fossils differ from those in the surrounding sediment matrix. Here we compare the community structures of subseafloor microbes in co...
متن کامل